skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shao, Yang_Victoria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This work reports a three‐dimensional (3D) radio frequency L−C filter network enabled by a CMOS‐compatible two‐dimensional (2D) fabrication approach, which combines inductive (L) and capacitive (C) self‐rolled‐up membrane (S‐RuM) components monolithically into a single L−C network structure, thereby greatly reducing the on‐chip area footprint. The individual L−C elements are fabricated in‐plane using standard semiconductor processing techniques, and subsequently triggered by the built‐in stress to self‐assemble and roll into cylindrical air‐core architectures. By designing the planar structure geometry and constituent layer properties to achieve a specific number of turns with a desired inner diameter when the device is rolled up, the electrical characteristics can be engineered. The network layouts of the L and C components are also reconfigurable by selecting appropriate input, output, and ground contact routing topographies. The devices demonstrated here operate over the range of ≈1−10 GHz. Their area and volume footprints are ≈0.09 mm2and ≈0.01 mm3, respectively, which are ≈10× smaller than most of the comparable conventional filter designs. These S‐RuM‐enabled 3D microtubular L−C filter networks represent significant advancement for miniaturization and integration of passive electronic components for applications in mobile connectivity and other frequency range. 
    more » « less